
NASA CR-134455

NASA-CR-13 4 4 55) NASIS DATA BASE N73-30139

AANAGEMENT SYSTES: IBM 360 TSS

IMPLEMENTATION. VOLUME 1: INSTALLATION

STANDARDS (Neoterics, Inc., Cleveland, Unclas

Ohio.)a~- p BC $3.25 CSCL 09B G3/08 13477

NASIS DATA BASE MANAGEMENT SYSTEM - IBM 360 TSS IMPLEMENTATION

I- INSTALLATION STANDARDS

NEOTERICS, INC. C
co PM

prepared for2 F

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

NASA Lewis Research Center

Contract NAS 3-14979

PAGE 2

TABLE OF CONTENTS

A, INTRODUCTION 3

B. INSTALLATION STANARDS 3

C. SYSTEM OVERVIEWS 3

D. DATA SET SPECIFICATIONS. 3
1. Introduction.. * * * 4

2. Forms . , 4

E. PROGRAM DESIGN SPECIFICATIONS 8
1. Overview.. 8
2. Format. 8
3, General 16

F. PROGRAMMING CONVESTIONS. 17

1. Overview. 17
2. Language Independent. 17
3. Source Language Utility Routine 18
4. Language Dependent 19
5. ASSEMBLY LANGUAGE 19
6, PL/I. 21

APPENDIX - TABLE 1. 23

PAGE 3

A. INTRODUCTION

The NASIS Development Workbook contains all the
required system documentation. The major sections
are:

I. Installation Standards

II. System Overviews

III. Data Set Specifications

IV. Program Design Specifications

V. Retrieval System Reference Manual

VI. System Messages

VII. Cperating Specifications

VIII.rata Base Administrator Reference Manual

B. INSTALLATICN STANEARDS

This section describes the standard approach to
preparing system documentation and outlines program
design and coding rules and conventions. Included are
instructions for preparing all major specifications
and suggestions for improving the quality and
efficiency of the programming task.

C. SYSTEM OVERVIEWS

The system overviews are a management tool. They are
directed toward informing management of a system's
capabilities and requirements and are written
containing a minimum of technical terminology.

The intent of the overviews is to introduce the system
features to interested individuals. Therefore, each
major component of the system is represented in the
overviews section. Each overview contains a
description of the component's activities and role in
the overall system. This description includes
explanations of new terms and concepts, clarifying
charts and diagrams and a discussion of the performance
requirements and growth potential of the module.
Performance requirements consist of assumptions about
the environment (hardware and software) and
input-output format.

D. DATA SET SPECIFICATIONS

PAGE 4

The data set specifications describe, the content,
format, and medium of communication of every data set
required by the system. Thus, all relevant
information pertinent to a particular data set is
prepared in a standard form and centralized in a
single document, The standard format is the

following:

1. Introduction

This narrative notes identifying characteristics
of the data and its file. It includes layout

sheets and information in the following format:

A. DATA SET RARE: Name as used in the Design
Specifications.

B, CREATED BY: Name of the module in which the
data set is originally prepared.

C. TYPE OF FILE: One of the six identified in
part 2 of the data set specifications.

D. ORGANIZATION: VISAM, tape sequential, etc.

E. KEY IDENTIFIER (CONTROL FIELD): Name of the
field used for access to a record; also,
length of key field.

F, RECORD LENGTH: Byte length; if variable,
state the minimum record length.

G. BLOCKING FACTOR: If unblocked, state '1'.

H. PURPOSE: Describe the purpose of the data
set, its general contents and any
peculiarities or special features.

2. Forms

Because different types of data sets do not
require the same descriptive information, several
different forms are needed to adequately specify
data sets. Each of the six types of data sets is
discussed separately below with the specific forms
requirements for each indicated.

a. Punched Cards

Use the Multiple-Card Layout Form (X24-6599)
to designate each separate distinct card
format which has fixed fields. Each field
should be indicated by vertical lines

PAGE 5

surrounding the field. To identify the
field, consecutively number each field,
starting at the left (e.g., 1, 2,). On a
separate page, itemize each field by number
and identify the field name and the contents
of the field. Define the validation rules
for those fields which appear only on the
card and do not carry on into the system.

For cards which are free format or contain
variable fields, define the card layout using
a tabular form which specifies the fieldname,
the starting column (if appropriate), the
minimum and maximum field lengths, and the
content. Also, indicate any field
delimiters.

b. Formatted Print-outs

tefine the format for each distinct data set
using the standard IBM printer spacing chart,
Form X20-1776. Print all headings in the
exact postions in which they occur. Include
any numeric editing or alphabetic character
insertions which ALWAYS appear on the
report. Should one data set have multiple
print formats, use a separate form for each.
In any case, each different and distinct LINE
format must be indicated at least once for
each data set. Be sure to indicate any
special end-of-program or end-of-routine
print-outs which can occur. In all cases,
the layout format shall represent a sample
report.

c. Terminal Communication

Most terminal communication is in the form of
prompting messages and responses which are
fully described in the appropriate Design
Specification. Thus, the particular format
utilized need not be referenced through a
tata Set Specification.

Eisplay outputs in restricted format,
however, require description on the
Proportional Record Layout Form (X20-1702).
Document each distinctly identifiable display
format on a separate form. Since terminal
displays may not truly be data sets, the
introductory page may not contain all the
requested information.

PAGE 6

Frepare 2 display formats in the manner
specified above for print-out formats. Print
headers cn the form with all fields indicated
by X's. Indicate editing marks or constants
in their respective positions. Indicate
continuous streams of information broken into
rultiple lines with a block outlined by X's
and a printed notation within the block which
defines its parameters and contents. Also,
mark fields which always appear separate and
distinct with a numerical reference. Define
each of these fields on a separate page, by
number.

d. lables

Some tables are used to communicate between
rodules; others are used internally. Most of
the internally-used tables should be defined
within the appropriate module Design
Specification.

Use this section to describe any tables,
lists, or structures which are parameters to
a routine or pass information between
modules. Because of the nature of these
elements, no particular form need be used to
define them. However, the introductory page
shall still be prepared.

Structures can best be described by showing
the elements of the structure in an indented
hierarchical format, such as the structure
would appear in a PL/I program. Define each
element of the structure by either a line
comment on the form or a narrative
description on a separate page.

lists (arrays) typically contain recurring
elemental items, each of the same format and
size. To define a list, simply give the
dimensions of the list (number of items,
state maximum, if variable) and describe the
detail for one element. This description
includes name, length, and content of each
field in a list element.

In many cases, a structure can also be
defined in tabular form. A set of related,
but unlike, items might be grouped together
to form a table. In these instances, the
reans of description is a columnar document.
To standardize the format, apply the

PAGE 7

following concept to each element:

1. Indicate the starting character
position, assuming the entire set of
elements is a continuous character
string.

2. Denote the field name.

3. Give the field length.

4. Describe the field content, indicating
any particular values assignable to the
field.

To segregate the columns, use vertical lines
and headers for each column.

e. Non-Data Base Files

The documentation for each data set includes
the introductory page and one or more layout
forms. If the file contains any fixed-length
records, define the specific format on the
System/3E0 Record Layout Worksheet
(X20-1711). Indicate each field by vertical
lines placed in the appropriate positions on
the form. Number the fields consecutively
(1, 2, etc.) and, on a separate page, itemize
each field by number, with name, length, type
(binary, EBCDIC, etc.), and state content
teside each field.

Since variable-length records preclude the
use of a fixed-format layout form, describe
any files containing such records in a
tabular format. In using a columnar format,
all delimiters or field-length indicators
must be mentioned for each applicable field.
In some cases, where only a few
variable-length fields occur at the end of a
record, it may be more beneficial to define
the record using both a layout form, for
fixed-length fields, and a table, for the
variable-length fields.

Some of the files may contain header and/or
trailer records. For these include a
separate layout form or table to describe
the special record formats. In addition,
mention any special conditions or
considerations (special handling,
checkpoints, etc.).

PAGE 8

f. Data Base Files:

tefine each data set in terms of the set of
descriptors for that file. To accomplish the
definition, a special descriptor layout has
been prepared and shall be used. The first
specification in this section is the
descriptor format for the descriptors,
themselves. Included is the format of the
descriptor header.

Detailed information for using the form for
the descriptors can be obtained from the
descriptor editor user's guide.

E. PROGRAM DESIGN SPECIFICATIONS

1. Overview

This section contains the design specifications
for the programs and modules within NASIS. Its
purpose is to standardize the preparation of the
specifications and to guide the program design.

Each major functional module within the system is
a separate entity for documentation purposes. The
design specifications shall contain a description
of, and specifications for, all detail processing
which occurs in the module. Sub-modules,
reference tables and data sets which are common to
several modules are documented separately.

All modules do not require narrative entries under
each heading and for some generalized routines a
variance from the standard approach may be
necessary. However, in all cases, the unused
headings shall still be included in the
specifications and a 'NOT APPLICABLE' reference
noted. This action removes all doubt that anyone
omitted considerations relative to a heading and
yields a positive response to each item.

2. Format

The standard outline is shown in the following
chart:

A. MODULE NAME

B. ANALYST

C. MODULE FUNCTION

PAGE 9

D. EATA REQUIREMENTS

1. I/O Block Diagram

2. Input Data Sets
a. Parameter Cards
b. Punched Card Input Files
c. Input Files
d. On-Line Terminal Entries

3. Output Data Sets
a. Output Files
b. On-line Terminal Displays
c. Formatted Print-outs
d. Punched Card Output Files

4. Reference Tables

E, PROCESSING REQUIREMENTS

1. Top Level Flowchart

2. Narrative

F. CODING SPECIFICATIONS

1. Source Language

2. Suggestions and Techniques

The following paragraphs describe the content of
each section:

MODULE NAME Heading

State a functional name for the module, e.g.,
MAINTENANCE. Following the functional name, state
a program name, which is eight or fewer
characters with the first character an "R", e.g.,
RDBMNIN. After the program name state the module
name, usually the same as the program name minus
the leading "R".

ANALYST Heading

Record the name(s) of the individual(s) who
prepared the design specifications.

MODULE FUNCTION Heading

Use this heading to give a general description of
what the module accomplishes. Limit the narrative
to approximately one-fourth page of single-spaced

PAGE 10

typed copy.

DATA REQUIREMENTS Heading

Define all the input and output data sets,
including any intermediate work-data sets. Also,
specify any reference tables used by the module.
If the nature of the module is such that some data
sets are unknown until execution time, outline the
classes of data sets that are expected.

In specifying data sets, a name reference to the
proper data set will suffice since all data sets
are fully described in their own section of the
Workbcok. However, while details of the formats
of ccamon data sets are not necessary, the
processing of the data must still be specified.

I/O BLOCK DIAGRAM Heading

To place the module in the proper perspective and
to give an overall picture of the data flow, draw
a separate block diagram of the module and all
data sets referenced by the module. The symbols
for the block diagram shall be obtained from the
latest revision of the IBM template (Form
X20-8020).

INPUT DATA SEIS Heading

Specify all input files. Describe in detail those
Job Ccntrol cards which may affect the module.

PARAMETER CARDS Heading

Explain the functions which are controlled by each
parameter that appears on each parameter card used
by the module. In additition, include a table
showing the card format and a description of each
field's content. If applicable, as for a
fixed-position format, standard Multiple-Card
Layout Forms may be used. A sample format layout
follows:

1. Card Name - DATE

2. Field - 1
a. Columns 1-2
k_. Contents - Year

3. Field - 2
a. Columns 3-4
b. Contents - Month

PAGE 11

4. etc.

PUNCHED CARD INPUT FILES Heading

Identify all punched card files defined in the
Data Set Specifications section of the Workbook
using the appropriate standard file name.

INPUT FILES Heading

Identify all input data sets by the appropriate
standard file name.

In the case of generalized modules, data sets
cannot be identified by name. However, it is
probable that a particular class of data sets is
accessed by the module. Write a short paragraph
defining the class or classes of input data sets,
along with a general indication of how each class
might be referenced or manipulated.

ON-IINE TERMINAL ENTRIES Heading

In many modules, certain responses or commands are
issued from terminals. Although a particular
sequence of fields of data may be expected, the
actual format could be free. For purposes of
documentation, state all response formats in terms
of the generalized free format construction and
indicate any necessary field delimiters. Use a
table, such as the type specified for parameter
cards, for the various entry formats. Since many
responses are subject to particular execution time
situations, actual values for the responses are
specified as part of the Processing Requirements
secticn.

OUTPUT DATA SETS Heading

Output from a module may consist of many different
types of information in many different formats.
Specify all data sets including terminal displays
and card and printer output. Describe in detail
those Job Control cards which can affect the
module.

OUTPUT FILES Heading

All data base output files, with the possible
exception of intermediate work files, are defined
in the Data Set Specifications section of the
Workbcok. Identify by the appropriate standard
file name all data sets output by the module.

PAGE 12

Where work files are needed, determine whether the
intermediate file is utilized by other modules in
the system. If so, insert the specifications for
the file in the Data Set Specifications section of
the Workbook. If not, define the work file in
detail, including the following information where
applicable:

1. File attributes
a. organization
b. recording medium
c. name

2. Record attributes
a. key identifier
b. length
c. mode (fixed or variable)
d. blocking factor

3. Field attributes (per each field)
a, length
b. mode
c. data type (alphabetic, etc.)
d. position in record

4. Other identifying information

In the case of generalized modules, data sets
cannot be identified by name. However, it is
probable that a particular class of data sets is
output by the module. Write a short paragraph to
define the class, or classes, of output data sets,
along with a general indication of how each class
is prepared.

ON-LINE TERMINAL DISPLAYS Heading

Describe all specific display formats generated by
this module. In those instances where displays
are generalized messages whose values are set at
execution time, show maximum field length
attributes and data type attributes (alphabetic,
etc.) and indicate a field name for reference by
the Processing Requirements section of the
specification.

Where the display is a graph or has some other
non-linear peculiarities, write a short paragraph
to identify the function and oddities of the
display. In all instances, assign an identifying
name to each distinct format so that proper
reference can be made within the Processing
Requirements section.

PAGE 13

FORMATTED PRINT-OUTS Heading

All print data sets generated by this module are
defined in the Data Set Specifications section of
the Mcrkbok. Identify them by the appropriate
standard file name. No reference need be made to
the various fields within the files since the
Processing Requirements section of the
specifications for this module contains the
detailed processing steps necessary to produce the
print outs. Should the print out require a
special form or particular line spacing not
menticned in the Data Set Specifications, describe
those requirements.

PUNCHED CARD OUTPUT FILES Heading

All punched card data sets generated by this
module are in the Data Set Specifications section
of the Workbcck. Identify them by the appropriate
standard file name. No reference need be made to
the various fields within the file since the
Processing Requirements section of the
specifications for this module contains detailed
processing steps to format the cards. Should a
specially-designed card be needed which is not
mentioned in the Data Set Specifications, describe
it.

REFERENCE TABLES Heading

Define all tables needed by the module. The
tables can be either local to this module only or
global for use by several modules. In the latter
case, define the table in detail in the Data Set
Specifications section.

The designer's objective is to identify table
usage; however, if the table is local to the
module, detail table specifications must be
stated. In providing this design-level
information, the designer shall:

a. identify the table with a suitable name.

b. identify the table organization, specifying
calling sequence or ether means of access to
the table.

c. define each field in the table by length,
mode (F or V) and data type.

d. give content of each of the fields if the

PAGE 14

table is used merely for reference. If the
table is to be used for internal storage,
then specify processing steps in the
Processing Requirements section.

If necessary for clarity, use a chart such as
Table 1 in the Appendix.

If the table is a true matrix or array of like
elements rather than a centralized source of
related information, specify the dimensions of the
matrix, the format and length of each element, and
the number of elements in each dimension. For all
tables, precede the table specifications with a
brief discussion of its function.

PROCESSING REQUIREMENTS Heading

Use this heading to present the functional
specificaticns of the program. These
specifications indicate the functions that the
module will have to perform.

The minimum documentation is a top-level flowchart
and a module narrative which presents the
functional specifications of the module in
generally the same order in which they are
executed. Use figures, decision tables, and
additional lower-level flowcharts for clarity.

TOP-LEVEL FLOWCHART Heading

The flowchart drawn under this heading depicts on
an overall tasis, the flow of data through the
various processing steps within the module. The
symbols for all flowcharts drawn in the Processing
Requirements section shall be obtained from the
latest revision of the IBM template (Form
X20-8020).

In designing the flowchart, observe these ground
rules:

a. The logical flow of the module proceeds from
the upper left corner of the sheet to the
lower right corner. If practical, avoid
right-to-left and lower-to-upper
processing.

b. Use the standard symbols and conform to
standard flowcharting conventions.

PAGE 15

c. Show the logic of the module as one mainline
cf processing which governs performance of
specific subroutines. Frame each subroutine
or sub-function reference in a PREDEFINED
PROCESS symbol with the name of the
routine.

NARRATIVE Heading

The most critical section of any design
specification is that which defines the actual
manipulation of the data. For this reason, the
narrative shall be written in a manner which is
simple and understandable, yet complete in
sufficient detail.

The data flow depicted in the top-level flowchart
serves as a guide to the sequence of the written
specifications. The mainline of the module is
defined first, thus presenting a written overview
of the processing. Present each of the
sub-functions or subroutines, as indicated on the
top-level flowchart, under sub headings which
reference the name stated on the flowchart.

Within each of the areas, prepare specifications
of required processing for that area.

On occasion, complete written description is
extremely difficult to prepare. In those cases,
supplementary material may be helpful. Decision
tables, illustrative charts, tables, and,
particularly, detail-level flowcharts may be
useful. Any such detail flowcharts are to follow
the conventicns described in the paragraphs 3.d-f.
below. However, since the sole purpose of the
Narrative section is to adequately specify ALL the
processing required by the module, the written
documentation is a primary requirement, while
other means of presentation serve merely to
clarify the narrative.

Since the Data Requirements Section makes no
attempt to define the processing required to use
or format I/C, this section is to: specify all
manipulation of data fields. State formatting of
output records, generation of table entries, and
manipulation cf input records field by field.

CODING SPECIFICATIONS Heading

Although the job of the analyst is to specify what
is to be dcne and not how to do it, certain

PAGE 16

aspects of the implementation can often be
foreseen, State these points affecting the
programming phase.

SOUSCE LANGUAGE Heading

The installation may use only one coding language,
in which case this heading becomes superfluous.
Often, however, one language may be favored over
another for a particular module because of some
special attributes of the language or efficiency
considerations. State the language suggested for
usage. If certain sub-modules are programmed in a
different language, identify each sub-module and
give valid reasons for its difference.

SUGGESTIONS AND'TECHNIQUES Heading

While the intent of the Program Design
Specifications is not to design the intricate
details of a program, it often is the case that
the analyst kases various portions of his design
on certain ivplementation techniques. Document
any suggestions for efficient methods of coding
certain intricate routines and any techniques for
handling especially complex processing. Assume
the programmer is competent in good coding
techniques and, thus, document only special
situations.

3. General

In applying the format for writing Program Design
Specificaticns, certain general conventions shall
be observed.

a. Type all documentation, including charts,
graphs, and tables, but excluding
flowcharts, on standard Neoterics, Inc.
specifications forms.

b. Insert inapplicable headings and document as
"Not Applicable".

c. Write narrative using complete sentences and
good paragraph structure.

d. Prepare flowcharts on plain Neoterics paper
using the standard symbols on the IBM
template number X20-8020. Charts proceed
from top to bottom and from left to right.

e. Each page of flowcharts is self-contained.

PAGE 17

That is, show a routine from beginning to end

cn one page (if possible). Since many
routines have too much detail for one page,
the first page of the flowcharts for that
routine depicts the total flow of the
routine with any necessary subroutines
indicated as a "predefined process," These
subroutines are then charted on other pages.
The entire set of flowcharts then is nested
where tte charts become progressively more
detailed. In this method, no interpaqe
connectors are necessary. To provide
reference points for any detailed
subroutines, each "predefined process"
symbol contains the page number of the page
showing the detail of the subroutine.

f. Arrowheads shall appear on right to left and
bottom to top directional lines. Use of
arrowheads cn other lines is optional and
should te omitted except where required for
clarity.

F. PROGRAMMING CONVENTIONS

1. Overview: This section defines the coding
conventions and format for the modules within
NASIS. Its purpose is to provide a'programming
standard which yields code that is consistently
structured, adequately documented, and easily
readatle.

Separate ccnventions are discussed for each
language used. Where practicable, however,
formats and structures are consistent between the
languages.

Prime targets for standardization include
comments, statement labels, data area structure,
and program names and line numbers. Additional
consideration is given to the use of optional
symbols and key words for documentation purposes,
to placements of the various sections of the
coding, and to the identification of program
sections or sub-modules via line-spacing and
comment headers.

2. Language Independent: When coding; Print all
letters as capitals; The letter "aye" is "I"; the
number "one" is "1"; The letter "oh" is "0"; the
number "zero" is "0". The letter "zee" is " "-
the number "two" is "2". Distinguish the letters
"U" and "V" carefully. Distinguish the letter S

PAGE 18

and the number 5 carefully;

Limit each line of coding in either PL/I or
Assemtler to columns 1-72. Of course, PL/I
conventions require the first coding character to
appear in column 2. Use columns 73-80 of each
line to contain either the line number or the
modification date. This data is automatically
entered by a utility program, which is defined
later in this section, and should not be entered
by the coder.

Use comments liberally throughout all modules.
Each module in the system shall have proper
identification. The information which should be
designated as part of the identification is:

a. TITLE - includes both a six-character module
name and a one-line module identifier.

b. COMPANY - is "NEOTERICS, -INC.
CLEVELAND, OHIO."

c. AUTHOR - identifies the name of the
programmer(s). If necessary, use initials,

d. CLIENT - is "NASA LEWIS RESEARCH CENTER."

e. SYSTEM - is "NASA AEROSPACE SAFETY
INFORMATION SYSTEM (NASIS)."

f. FUNCTION - describe, in a short paragraph,
the purpose and general data flow of the
module.

3. Source Language Utility Routine

A source language utility program is provided to
enable the programmer to maintain a current,
sequenced version of his module. In coding, do
not enter any line sequence information.

This utility provides a reorganized and
resequenced line data set for the source language
and maintains the current version number and date.
Thus each modification belongs to a particular
versicn.

Once the source module has been formatted into a
line data set, modifications and additions to the
module are applied directly to the line data set.
During the compiling phase of module development,
there is nc requirement to use the utility.

PAGE 19

However, it is to be executed often enough for
each module to maintain a reasonable level of
currency in the sequencing of line numbers.

4. Language Dependent

An important consideration in coding is to provide
a module which can be readily modified or
maintained. Thus, coding must be modular and well
documented. Extra time and care expended in the
original coding phase can save many hours of time
during debugging or maintenance. The conventions
enumerated below in separate language-dependent
categories exist to help the programmer produce a
well-structured, self-documenting, and easily
readable module.

5. ASSEMELY IANGUAGE

Several conventions concerning the actual format
of the coding are to; Begin be followed, all
statement and data labels in column 1; Begin
operation codes or macro calls in column
10; Eegin operands in column 16. (Macros may
need an eight-character operation. In this case,
operands start in column 19); Begin comments in
column 36. Each line of code should be
commented;

To easily identify sub-modules or subroutines,
certain organization conventions are to be
practiced. Begin all sub-modules or subroutines
on a new page on the assembly listing; Within
long routines, plan the coding so that a section
never crosses a page boundary of the assembled
listing; Precede each section with a one-line
comment describing the function of the section.

Within the structure dictated by the above
conventions, utilize the following standards in
coding the modules.

All coding must be re-entrant; Use the standard
Syster/360 . linkage conventions for all
subroutines. These rules can be found in the IBM
Assembler Language Programmer's Guide; The module
CSECT should be read-only and contain only
executable instructions. Retain all data and
constants in the PSECT; Within the PSECT, group
the various types of non-executable coding by
category. (i.e., all file areas together, all
work areas together, all equivalences together,
etc.); Identify each file area or structure with

PAGE 20

a comment card which precedes the area; Invent
meaninqful labels for both data and instruction
statements in terms of the value or function they
represent. Do not use nondescript labels, such as
people's names or objects; Define literals,
either string or arithmetic, used more than once
in the context of the instructions via a data
statement or an equivalence prior to its use.
(e.g., the character "*" should be defined using
an equivalence with the label
"ASTERISK"). Minimize the use of instruction
counter references. Use of this feature of the
language is warranted only in cases where the
reference point is within one or two instructions
of the instruction having the reference; Make all
register references symbolic and conform to the
labels RO-R15 for registers 0-15; The standard
base register for the PSECT is R13; for the CSECT,
R11. Assign additional base registers as
desired.

Three macrcs are available, and should be used, to
assist in the standardization of the modules.

a, EBSTART - Code this macro at the very
beginning of the module. Its format is:

label DBSTART (CSECT entry points),
(CSECT base registers),
(PSECT base registers)

where up to thirty-two entry points, six
CSECT registers and six PSECT registers can
be specified. Separate multiple operands
with commas.

b. IEENTEY - Code this macro as the first

instruction in the CSECT defined by the entry
points indicated in DBSTART. Its format is:

label DBENTRY entry point name

c, EBEXIT - Place this macro at the end of the
CSECT defined by the entry points indicated
in DBSTABT. Its format is:

Label DBEXIT

All assemblies are to contain both an object
listing and a cross-reference listing. A symbol
listirg is nct required in the debugging phase but
is to be contained in the final version of the
module.

PAGE 21

6. PL/I

The format of these modules shall conform to the
following rules; All coding must be
re-entrant; Eegin all statement labels in column
2 of a separate line of code. (Column I is used
for listing carriage control.); Begin the text of
each statement (apart from any label) in column 5
of a new line, subject to the indentation rules
which are indicated below; Comment each line to
the extent possible. If the line is short enough
to permit it, start the comment in column 41. If
the comment is too long for the available space,
continue it on the next succeeding line; Use
indentation to emphasize data and statement
relationships and to provide coding which is
easily read and understood. Format data
structures so that each subordinate level is
indented four columns from the margin of the next
higher level., Start the THEN and.ELSE clauses of
the IF statement on a new coding line indented
four columns from the margin of the associated IF.
Use another four-column indentation for nested IF
statements.

Procedures and segments within a module should be
easily identifiable. Construct a descriptive
header for each segment or procedure in the
following format:

Cne procedure name definition card containing
a comment of continuous asterisks following
the name and an eject page carriage control
character;

Cne blank comment card or a zero in column 1
of the next card;

Cne or more comment cards describing the
segment and, if necessary, any parameters
being passed through the routine;

Cne blank comment card or a zero in column
one of the following card;

Cne comment card containing a continuous
string of asterisks;

If the routine is not a procedure, use a segment
label instead of a procedure name on the first
card of the header. The first line of statement
text then immediately succeeds the header. This
convention effectively provides a description box

PAGE 22

for each routine.

Standardizaticn of the organization and content of
the ccding provides easy reading and understanding
of the modules. Observe these coding rules:

a. teclare all variables.

b. Position all DECLARE statements immediately
after the PROCEDURE or BEGIN statements of a
block (succeeding any special requirements
such as a %INCLUDE LISRMAC(DB); statement
when using DBPL/I).

c. Code no more than one statement on a coding
line.

d. gualify all references to minor structures
and structure elements, at least, by the
major structure name.

Field High-Order Length Contents Comments

Name or Byte (BIT) No.1 BIT I Byte

I I

1 1 8 x File name

2 9 (0) 1 x Open switch

3 9 (1) 1 x Element switch Set on to start

I I

Table 1.

Example of a fleference Table chart

